E. coli phage transport in porous media: Response to colloid types and water saturation.

Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China. Electronic address: zhangwenjing80@hotmail.com. Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China. Power Engineering Consulting Group, Northwest Electric Power Design Institute Co., Ltd. of China, Xi'an 710075, China. Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China. School of Geography, Earth and Environmental Sciences, University of Birmingham, UK.

The Science of the total environment. 2024;:167635
Full text from:

Other resources

Abstract

Because of its long survival time, high migration ability and high pathogenicity, the migration of the virus in the subsurface environment deserves in-depth exploration and research. In this study we investigated the migration behavior of E. coli phage (VI) with organic colloids (HA) or inorganic colloids (SiO2) in the saturated or unsaturated bands and compared the differences in their migration mechanisms.The effects of different colloids on the surface characteristics of VI were analyzed according to particle size and zeta potential. Column experiments were conducted to simulate their migration in the subsurface environment. The results show that HA enhances the stability of VI-HA, promotes VI migration and plays a dominant role in its migration process under both saturated and unsaturated conditions. In contrast, SiO2 puts VI-SiO2 in an unstable state and is easily separated in the unsaturated state, thus promoting VI migration. Based on migration experiments, the extent of influence factors on VI migration was quantified and compared. The effect of colloids on VI migration is greater than that of moisture content, where the effect of HA is greater than that of SiO2. This study provides an experimental research idea to determine the dominant factors affecting virus migration, and provides a general direction and theoretical basis for the biological risk assessment of pathogenic microorganisms in complex underground environments, in order to enable the decision makers to make a response in time, accurately, and efficiently.